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Abstract

Background: The current study focused on the extent genetic diversity within a species (Mus musculus) affects gene
co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous
stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The
eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a
C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains,
were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data
sets were interrogated using a weighted gene co-expression network analysis (WGCNA).

Results: Genes reliably detected as expressed were similar in all three data sets as was the variability of expression.
As measured by the WGCNA, the modular structure of the transcriptome networks was also preserved both on the
basis of module assignment and from the perspective of the topological overlap maps. Details of the HS-CC gene
modules are provided; essentially identical results were obtained for the HS4 and F2 modules. Gene ontology
annotation of the modules revealed a significant overrepresentation in some modules for neuronal processes, e.g.,
central nervous system development. Integration with known protein-protein interactions data indicated significant
enrichment among co-expressed genes. We also noted significant overlap with markers of central nervous system
cell types (neurons, oligodendrocytes and astrocytes). Using the Allen Brain Atlas, we found evidence of spatial co-
localization within the striatum for several modules. Finally, for some modules it was possible to detect an
enrichment of transcription binding sites. The binding site for Wt1, which is associated with neurodegeneration,
was the most significantly overrepresented.

Conclusions: Despite the marked differences in genetic diversity, the transcriptome structure was remarkably
similar for the F2, HS4 and HS-CC. These data suggest that it should be possible to integrate network data from
simple and complex crosses. A careful examination of the HS-CC transcriptome revealed the expected structure for
striatal gene expression. Importantly, we demonstrate the integration of anatomical and network expression data.

Background
Gene co-expression analyses have provided important
insights into the functional organization of the tran-
scriptome in several species, including yeast [1], mouse
[2] and primates [3]. Co-expressed genes frequently
code for interacting proteins, which in turn leads to new
insights into protein function(s). Many co-expression

patterns are conserved across species, suggesting the
patterns are under selection pressure and therefore
functional; a variety of studies have confirmed this pre-
mise [3-7].
The current study focuses on the conservation of brain

gene co-expression networks from the perspective of how
marked differences in genetic diversity within a species
(here Mus musculus) affect network structure. To examine
this issue, we have created a new mouse resource, a het-
erogeneous stock (HS) formed from the same eight inbred
strains that have been used to create the collaborative
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cross (CC) [8]; hereafter this resource is referred to as the
HS-CC. The eight inbred strains chosen as the CC foun-
ders were the following: C57BL/6J (B6), A/J (A), 129S1/
SvImJ (129), NOD/LtJ (NOD), NZO/HILtJ (NZO), CAST/
EiJ (CAST), PWK/PhJ (PWK) and WSB/EiJ (WSB). The
choice of these strains was a balance between ensuring the
greatest possible genetic diversity while at the same time
including some strains (and their associated phenotypes)
familiar to many biomedical scientists. Using single
nucleotide polymorphisms (SNPs) as proxy for genetic
diversity, these strains capture > 90% of the available
genetic diversity within Mus musculus (see http://www.
sanger.ac.uk/modelorgs/mousegenomes/). Capturing this
degree of diversity is possible because of the inclusion of
the three wild-derived strains: CAST (Mus musculus cas-
taneous), PWK (M.m. musculus) and WSB (M.m. domesti-
cus). To contrast with the HS-CC, we have chosen a
B6×DBA/2J (D2) F2 intercross and the HS4, derived from
intercrossing the B6, D2, BALB/cJ and LP/J strains [9].
The HS4 and HS-CC were outbred using a similar circle
breeding strategy, and both are maintained as 48 families
per generation. From the SNP perspective, the HS-CC is
~6 times more diverse than the F2 intercross and ~4 times
more diverse than the HS4; the actual differences in
genetic diversity will be somewhat less because of genetic
drift associated with breeding the HS populations for mul-
tiple generations.
Gene expression data (Illumina WG 6.1 array) were

obtained in the striatum, a relatively homogenous brain
region composed largely of medium-spiny GABAergic
neurons. The striatum has a key role in a wide variety of
behaviours; the functions of the striatum are well under-
stood; and a number of key striatal genes (e.g., Drd1a and
Drd2) are known to have a highly variable expression [10].
The unbiased Weighted Gene Covariance Network Analy-
sis (WGCNA) developed by Horvath and colleagues [11]
was used to detect gene modules. This approach has been
successfully used to analyze gene expression data related
to brain cancer [12], the yeast cell cycle [1], mouse tissue
[2,13], primate brain tissue [14], diabetes [15], chronic fati-
gue syndrome [16], plants [17] and amyotrophic lateral
sclerosis [18].
The HS-CC data set was further characterized, empha-

sizing the fine spatial distribution of the gene modules. It
has been suggested that groups of genes participating
together in common biological functions may show a simi-
lar spatial pattern of expression [19]. The Allen Brain
Atlas (ABA; http://www.brain-map.org/) [20] provides
detailed information about the spatial distribution of thou-
sands of genes throughout the mouse brain. For the pur-
poses of the present study, it was possible to determine
whether a particular gene is specific to the striatum and/or
its subdivisions and whether its spatial distribution is uni-
form or clustered. In addition, the ABA interface allows

quantification of the spatial similarity of two expression
patterns using the NeuroBlast algorithm [21,22]. These
resources were used to investigate whether groups of
co-expressed genes also show spatial co-localization.

Results
Detectable and variable genes are preserved across
populations
The initial comparison of gene expression in the three
mouse populations (F2, HS4 and HS-CC) focused on
what transcripts had a detectable expression. Not all
microarray probes exhibit a detectable signal because a)
the target gene is not expressed, b) the expression level is
below what can be reliably measured, c) the probe per-
forms poorly, producing a false negative or d) SNP(s)
within the probe sequence impair hybridization [23,24].
The SNP effect is especially important when comparing
genetically diverse populations. Therefore, we removed
all probes overlapping with known SNPs, as outlined in
Methods. Next, the Illumina gene expression analysis
package “lumi” [25] was used to assess the probability of
probe expression above background. A probe was
deemed to have a significant expression if the probability
of being part of the background (low) distribution was
less than threshold Th = 0.01 in at least a quarter of the
samples. This procedure was applied to each of the three
experiments after outlier removal and normalization of
the data (an outline of the data pre-processing steps is
available in Methods; see also Additional File 1, Figure S1
and Additional File 1, Figure S2). As shown in Figure 1A,
there was a significant overlap among the three data sets
for the probes meeting the threshold criteria. A total of
14558 probes did not meet the criteria for above-thresh-
old expression in any of the data sets.
The co-expression networks are constructed on the
basis of the correlated variability across individuals.
Expression variability was computed by determining the
coefficient of variability (CV) for the set of 9565 com-
monly detected probes (Figure 1A); 1023 of the probes
were in the bottom quartile for all three populations. Of
the remaining probes, 5600 were in the top three quar-
tiles in all populations, illustrating the conservation of
the variance structure (Figure 1B).

Construction of gene co-expression networks
Gene co-expression networks were constructed for the
three data sets following methods described previously
[11]. Briefly, the power-transformed Pearson correlation
coefficient between gene pairs was used to infer a mea-
sure of connection strength or topological overlap [26].
Subsequently, this measure of gene co-expression was
used in an automated hierarchical clustering procedure
[27], resulting in the identification of several distinct
modules or groups of genes with similar expression
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patterns. This series of steps was used to independently
detect co-expression modules in each data set, identify-
ing 16 distinct modules in HS-CC and 13 modules each
in F2 and HS4. Genes left unassigned to modules were
denoted with the grey color. The exact number of gene
modules in any network was not considered essential
because the number of modules detected is highly
dependent on the clustering procedure settings. The
color assignment of the modules in the three different
networks was arbitrary, and the same color assignment
in different networks did not carry meaning, except for
the unassigned genes (grey color). The genes associated
with each of the modules in all three populations are
listed in Additional File 2.
Comparisons of the HS-CC, F2 and HS4 networks are

illustrated in Figures 2 and 3. The data revealed that
essentially all F2 and HS4 modules had a counterpart in
the HS-CC and vice versa (Fisher exact test), although
some of the larger HS-CC modules fragmented into two
or more F2 or HS4 modules. An examination of the
unassigned “grey” genes across the three networks
revealed that their identity was largely preserved.
To further quantify the level of module preservation, a

matrix comparison procedure was used. Each module was
described by a topological overlap matrix (TOM) with
entries quantifying the level of gene pair co-expression.
The matrices were compared by computing the Mantel

matrix correlation [28] between the HS-CC modules and
the same genes in the F2 and HS4 networks. A high matrix
correlation signifies that the pattern of pairwise topological
overlap in two different data sets was similar. Statistical
significance was evaluated by repeatedly (N = 105) shuf-
fling the columns of one matrix and recomputing the cor-
relation using the randomized matrix [29]. For the HS-CC
and F2 comparison, the matrix correlation values ranged
from 0.22 (blue module) to 0.69 (purple module). The
HS-CC to HS4 comparison yielded correlation values
between 0.16 (salmon module) and 0.74 (purple module).
All correlation values were significant at p < 10-5 or better,
except for salmon module (p < 3×10-3). Thus, the module
structure was largely preserved. This congruence sug-
gested that each module must have functionally conserved
attributes; these attributes were investigated in the HS-CC.

Gene ontology (GO) annotation of the HS-CC modules
GO annotation [30] was used to determine if the mod-
ules had unique functional properties and/or were asso-
ciated with distinct subcellular compartments (see e.g.,
[13]). For example, the pink module was enriched for
GO biological processes that included the following:
central nervous system development (Bonferroni cor-
rected p < 8.6×10-3), regulation of neurotransmitter
levels (Bonferroni corrected p < 8.9×10-3), regulation of
timing of neuron differentiation (Bonferroni corrected

Figure 1 Overlap of probe detectability and probe variability across the three data sets. (A) Probes detected in each of the data. A set of
9565 genes were above the detection threshold in all three data sets; 14558 genes were not detected in any of the data sets. (B) Probes with
high variability. A number of 5600 genes were in the top 75% in terms of coefficient of variation CV in all three data sets, and these genes were
selected for network construction; 1023 were in the bottom 25% in terms of variability in all data sets.
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Figure 2 Overlap of F2 and HS-CC module membership. The numbers on the axes denote the number of genes in each module. The
number in the box denotes the intersection size. The colour legend is proportional to -log(p) probability of chance overlap of same size or
higher.

Figure 3 Overlap of HS4 and HS-CC module membership. Figure details as in Figure 2.
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p < 0.016), neuron development (Bonferroni corrected
p < 0.036) and forebrain development (Bonferroni cor-
rected p < 0.043). The red module was significantly
enriched in genes corresponding to GO category beha-
vioural fear response (Bonferroni corrected p < 0.0024);
the tan module was enriched with genes associated with
ensheathment of neurons (Bonferroni corrected p <
1.4×10-4), regulation of action potential (Bonferroni cor-
rected p < 1.4×10-3), myelination (Bonferroni corrected
p < 1.9×10-2), oligodendrocyte cell fate commitment
(Bonferroni corrected p < 2×10-2), glial cell fate specifi-
cation (Bonferroni corrected p < 2×10-2) and myelin
assembly (Bonferroni corrected p < 2× 10-2). Only the
most significant GO annotations are reported here, after
taking into account the nested structure of the GO cate-
gories [31]. Bonferroni correction was applied because of
comparisons against all 16 modules. A full list of signifi-
cant module GO annotations is found in Additional
File 3.csv.

Proteome interactions and transcriptome co-expression
The HS-CC co-expression patterns were compared with
the compiled protein-protein interactions (PPI) in the
Human Protein Reference Database (HPRD) [32,33].
First, the network genes were cross-referenced with the
list of HPRD gene products. Second, network genes with
PPI interactions were selected, and the average topologi-
cal overlap was computed. Comparing the average topo-
logical overlap of the PPI genes against an empirical
distribution of random gene groups revealed that the PPI
group had significantly higher topological overlap (p <
10-5). These data confirm that co-expression patterns in
the transcriptome are related to interactions in the pro-
teome, in agreement with previous results [3,34].

Modules overlap with specific brain cell types
Module membership was compared against lists of
genes associated with neuronal cell types [35]. Several
modules (light cyan, yellow, pink and red) were enriched
with neuronal cell markers (see Figure 4). The tan mod-
ule was enriched with oligodendrocite specific genes,
which is concordant with its GO annotation for oligo-
dendrocyte cell fate commitment. The magenta and yel-
low modules contained genes associated with astrocytes.
Using an additional data set that identifies genes highly
specific to subcategories of striatal neurons [36], we
found that the red module contains several genes asso-
ciated with striatopallidal neurons.

Spatial co-localization and transcriptome co-expression
Gene module membership was compared with the spatial
distribution of the genes from the ABA [20]. Sets of co-
localized genes were constructed beginning with the ten
genes closest to the eigengene for each module; the

eigengene modelled the representative pattern of module
expression [37]. Each gene in the module was then
assigned a measure of module membership “kMe”, on
the basis of its correlation with the eigengene. For each
network module, the ten genes with highest kMe were
selected. For each of these ten “seed” genes, the ABA was
used to find the 250 genes with the most similar striatal
spatial distribution. From this group, those present in the
HS-CC network were denoted as the “co-localized”
group. The Fisher exact test was used to assess the over-
lap between the spatially co-localized group and all mem-
bers of a respective module, and Bonferroni correction
was applied to correct for comparing each of the 16 mod-
ules. For eight of the modules, the overlap was signficant,
with Bonferroni corrected p-values ranging from 0.01 to
6.9×10-24.
The extent of correspondence between co-expression

and co-localization was further explored using the full
set of pairwise interactions in the transcriptome with
the set of pairwise spatial relationships captured in the
ABA [20]. For a module, the transcriptome relationships
were summarized by the topological overlap matrix.
A similar size matrix for pairwise similarity in spatial
profiles was constructed using the NeuroBlast algorithm
[21]. Because only the top 250 most similar spatial pro-
files to a given gene are identified by NeuroBlast, the
spatial similarity matrices were sparse. However, the
Mantel test [28] still detected a moderately strong rela-
tionship between the co-expression and co-localization
matrices for three of the modules: red (r = 0.43, p <
2.0×10-5), purple (r = 0.27, p < 3.0×10-3) and tan (r =
0.40, p < 10-2).
Brain Explorer [38] was used to visually inspect the

spatial properties of the co-localized module genes. For
the ten co-localized genes closest (in correlation) to the
module eigengene, the expression levels were superim-
posed and plotted over the extent of the striatum (see
Figure 5). A few of the co-localized modules displayed
distinctly localized patterns of spatial expression. The
high expression of the midnight blue module (Figure
5B) appeared largely restricted to the nucleus accum-
bens, while the purple module (Figure 5C) displayed a
very distinctive dorsal tier pattern of expression within
the caudate putamen. A more typical pattern is that of
the red module (Figure 5D) which appeared highly
expressed through most but not all of the area of the
striatum. The GO categories enriched in the midnight
blue, purple and red modules are found in Additional
File 3.

Transcriptional regulatory analysis of gene modules
Module-specific genes were examined for overrepresen-
tation of transcription factor binding sites (TFBS). The
strategy employed is detailed in Methods. Using a false
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discovery rate threshold of 0.1, we identified 9 TFs pre-
ferentially affecting 5 gene modules (Table 1). The most
highly enriched TF was Wilm’s tumour suppressor
(Wt1) in the pink module (p < 3×10-5); this module is
modestly enriched in GO categories associated with the
regulation of transcription and neuronal development
(see Additional File 3) and has also been associated in
the literature with distinct neuropathological conditions
such as Alzheimer’s disease [39]. The two modules
(midnight blue and purple) that show distinct patterns
of expression (see Figure 5) were not associated with TF
enrichment. The blue and red modules were enriched in
Specificity protein (Sp)-1, which is known to have a role
in the regulation of striatal gene expression (e.g., [40]).

Discussion
Previous studies have reported preservation of gene co-
expression modules across mouse strains [41] and even
across species [14]. The level of preservation or diver-
gence is usually quantified by the amount of overlap of
gene modules from different networks. While this
approach has been proven useful and we also employed
it in the present study (see figures 2 and 3), it is highly
dependent on the clustering procedure. We therefore

employed an additional, complementary approach of
quantifying the level of preservation: the Mantel test of
correlation between two matrices [28]. This method has
been used extensively in quantifying relationships
between genetic, geographic and environmental distances
[42], and more recently has been adapted to quantifica-
tion of differentially expressed genes [29]. If topological
overlap between genes is preserved, this is detected as
high correlation between the respective TOM matrices.
Additionally, the Mantel test can be used for comparing
any similar rank matrices, as we illustrate by quantifying
the relationship between topological overlap and spatial
co-localization, both of which can be represented as
matrices of pairwise interactions. Overall, the data illus-
trate that, despite a > 6-fold difference in genetic diversity
(HS-CC versus F2), the overall module structure of the
striatal networks was preserved. Intuitively, this congru-
ence may seem obvious because the striatum performs a
similar function in all three populations. However, there
was a concern that the marked increase of genetic diver-
sity in the HS-CC, as compared with the F2 and HS4,
would have such marked effects on gene expression var-
iance that the overlap of the networks and their modules
would be difficult to detect. While the topological overlap

Figure 4 Overlap between modules and central nervous system cell type markers. The numbers on the y axis denote the number of
genes that are markers for cell types also present in the network. The number in the box denotes the intersection size. The colour legend is
proportional to -log(p) probability of chance overlap of same size or higher.
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matrices did suggest that there are some differences and
that some modules agree significantly better than others,
the overall structure remained intact.
The HS-CC data illustrate that relatively sophisticated

module details can be detected with relatively modest
sample sizes. Confirming the results of others [3], it was
possible to detect modules that were enriched in genes
associated with neurons (light cyan, yellow, pink and

red), oligodendrocytes (tan) or astrocytes (magenta and
yellow). Only the yellow module showed an overlap.
These data suggest that there are sufficient numbers of
each cell type (and thus statistical power) to allow the
clustering procedures to detect cell-type specific mod-
ules. A similar argument could be used to explain our
ability (albeit somewhat limited) to detect unique spatial
localizations for some modules. A majority of genes in
our network were categorized in ABA as having uniform
spatial distribution. However, the striatum is a complex
structure with distinct subdivisions, some of which have
been associated with specific behavioural states [43].
Even the most ubiquitous cell type within the striatum,
the medium-spiny neuron, displays distinct morphologi-
cal characteristics based on its spatial position, for
instance in the core or shell of the nucleus accumbens
[43]. Microarray samples are an amalgam of cell types
from many distinct anatomical substructures. While gene
expression studies have been instrumental in mapping
behaviour into specific physiological processes, progress
is hampered by the lack of more specific information
about the cell types and anatomical substructures directly
involved in patterns of gene co-expression. Our study
leverages the vast amount of information available in

Figure 5 Spatial specificity of modules. (A) Location of the caudoputamen and nucleus accumbens within the mouse brain. Left, coronal
section; right, saggital section. (B-D) The midnight blue, purple and red modules, respectively. The ten genes closest to the module eigengene
are selected for each module, and their expression is superimposed. For visual clarity, only the areas with medium-high expression intensity are
shown, with the darker red signifying high intensity of the hybridization signal (see Methods).

Table 1 List of transcription factors (TFs) affecting
specific module genes at a threshold of false discovery
rate (FDR) = 0.1 of enrichment compared with the rest of
the network

Module TF Raw p-value/FDR TFBS/genes in module

Pink Wt1 3e-05/0.00543 89/151

Black LRH1 0.001/0.0972 32/152

Black Pax-6 0.00057/0.0972 73/152

Blue ZF5 0.00001/0.0019 248/482

Blue Sp1 0.00097/0.0614 182/482

Blue HIC1 0.00064/0.0608 60/482

Red Sp1 0.0004/0.0366 87/206

Red CP2 0.00016/0.02928 97/206

Turquoise CETS1p54 2e-05/0.0039 419/1315
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mouse atlases such as ABA. This approach can be further
enhanced by information emerging from studies using
laser-captured neurons [44].
The detection of transcription factors (TFs) specific to

distinct module genes provides a candidate mechanism
for generating the co-expressed patterns of gene expres-
sion. We were unable to align the distinct patterns of
expression in the midnight blue and purple modules with
specific TFs. The purple module is of particular interest
given the overexpression of the module genes in the
nucleus accumbens and the role the accumbens has in a
variety of behaviours including reward, reinforcement
and drug abuse [43]. Understanding the factors asso-
ciated with co-expression in this region has the potential
to lead to new molecular-based treatments. The red
module, which is associated with gene expression
throughout the striatum (Figure 5D), is enriched in the
Specificity protein 1 (Sp1) TF; the blue module also
showed enrichment in Sp1. Sp1 is known to affect path-
ways associated with neuronal survival and death [45],
and the dysregulation of SP1 has been associated with
Alzheimer’s disease [46]. The antibiotic mithramycin
binds to G-C rich DNA sequences to inhibit the binding
of SP1 [47]. Previous work [40] has shown that the
administration of mithramycin blocks the striatal toxicity
associated with chronic methamphetamine administra-
tion. It is of interest to speculate that this effect may be
mediated through an influence on the genes within the
red and blue modules.

Conclusions
We here present an integrative approach to the analysis
of mouse brain transcriptome data. The modular struc-
ture of the striatum transcriptome is largely preserved
despite large genetic differences among the HS-CC, F2
and HS4 populations. Gene co-expression modules have
spatial co-localization in some cases. A small set of TFs
has a strong overabundance specific to distinct modules.
These TFs have been previously associated with changes
in behaviour or neuropathology, indicating that using a
network-based comparison holds strong promise for the
elucidation of underlying regulatory mechanisms.
Finally, to our knowledge this is the first report on the
application of gene network analyses to HS populations.
HS populations have proven useful for the fine mapping
of quatitative trait loci (QTL) and for the integration of
QTL and gene expression data [9,48-53].

Methods
Animals
Breeding the HS-CC Mice
Males and females of the 8 parental strains (B6, CAST,
NOD, 129, NZO, PWK, A and WSB) were obtained
from The Jackson Laboratory. The strains were

randomly assigned a letter from A to H; the order of
assignment was the order noted above. The goal of the
breeding strategy described below was to create a small
panel (32 families) of the HS-CC mice; for such a small
panel, a completely balanced breeding design is not pos-
sible. At G1, the following reciprocal F1 hybrids were
formed: A×B, B×A; C×D, D×C; E×F, F×E; G×H, H×G.
At G2, the following reciprocal 4-way crosses were
formed: AB×CD, CD×AB; BA×DC, DC×BA; EF×GH,
GH×EF; FE×HG, HG×FE. At G3, 32 unique 8-way cross
families were formed: ABCD × EFGH, ×GHEF, ×FEHG,
×HGFE...........HGFE × ABCD, ×CDAB, ×BADC, ×DCBA.
Each family was bred in duplicate. Of the 64 matings,
61 had litters; the three matings without litters were
CDAB × EFGH, EFGH × CDAB and CDAB × HGFE.
Thus, all 32 of the planned families were formed. Begin-
ning with G4, the families were outbred using a circle
breeding design–a male from family 1 was bred to a
female from family 2 and so on. At G6, the colony was
expanded to 48 families by breeding a male from family
1 to a female from family 17 and so on. At G12, one
male and one female from each family were chosen for
striatal gene expression analysis.
Breeding the HS4 Mice
Males and females of the 4 parental strains (B6, D2, C
and LP) were obtained from The Jackson Laboratory. At
G1, the 12 possible reciprocal F1 hybrids were formed,
followed at G2 by forming the 48 possible reciprocal
4-way crosses. The 4-way crosses were then outbred fol-
lowing a similar design to that noted for the HS-CC. At
G19, one male and one female from each family were
randomly chosen for striatal gene expression analysis.
Details of the sample preparation are found in [9].
Based on RNA quality, on maximizing family diversity
and on gender neutrality, 64 samples were chosen for
gene expression analysis. High-quality data were
obtained for 54 samples.
Breeding the F2 Mice
Male and female B6 and D2 mice were obtained from
The Jackson Laboratory. The reciprocal F1 hybrids were
formed, followed by the formation of the 4 possible reci-
procal F2 hybrids. Eight males and females were ran-
domly selected from each of the reciprocal crosses.
From the 64 samples, high-quality expression data were
obtained for 56 samples.
All animal care, breeding, and testing procedures were

approved by the Laboratory Animal Users Committees
at the Veterans Affairs Medical Center, Portland, OR
97239, and the Oregon Health & Science University,
Portland, OR 97239.

Gene expression data processing
Gene expression data were obtained from the striatum
using the Illumina WG 6.1 array exactly as described by
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the manufacturer. Data were imported into the R appli-
cation environment (http://www.r-project.org) using the
lumi package [25]. Samples that were more than two
standard deviations away from the mean inter-array cor-
relation (IAC) [3] were not used in this study. This pro-
cedure was repeated three times resulting in
stabilization of IAC and reduction of the data sets from
94 to 87 samples (HSCC), 60 to 56 samples in F2 and
54 to 47 samples in the HS4.
Strip-level quantile normalization [54] was performed

using a modified version of the procedure available in
the lumi package (see Additional File 1, Figure S2).
Next, data were culled for any probes that did not have
an entrezID and also any probe that overlapped with
known SNPs in any of the founding populations, using
the publicly available Wellcome Trust Sanger Institute
database of known polymorphisms (http://www.sanger.
ac.uk/resources/mouse/genomes/). Further removed
from analysis was any probe unlikely to be reliably
detected [23,24], using the detectionCall procedure
available in the lumi R package. Using a cutoff threshold
of 0.01, all probes not expressed in at least a quarter of
the samples were removed. Finally, to reduce the size of
the data to a level suitable for subsequent network ana-
lysis and to reliably compute the correlation between
probe levels, we eliminated probes with variability in the
bottom 25% of any data set, as measured by the lumi
function estimateLumiCV. This resulted in a set of 5600
probes common across the three data sets, which were
subsequently used in the construction of the gene co-
expression networks (see Figure 1B).

Construction of the gene co-expression networks
For each of the three data sets, we performed a series of
steps for constructing a gene co-expression network, as
outlined in [55], using the WGCNA software package
available as an R package [11]. First, the absolute value
of the Pearson correlation coefficient was computed for
all pairs of genes in a data set. The Pearson correlation
matrix was subsequently transformed into an adjacency
matrix A using a power function. The connection
strength aij between probes xi and xj then becomes aij =
|corr(xi, xj)|

b; b = 6 was used based on the scale-free
topology criterion [55].
Modules are groups of genes with high ‘topological

overlap’ [55,56]. The topological overlap between two

genes i, j was computed as ij
ij ij

i j ij

l a

k k a
=

+

{ } + −min , 1
,

where l a aij iu uj
u

= ∑ represents the number of genes

connected to both gene i and gene j, while u indexes all
the genes in the network. Using the topological overlap

measure as opposed to the raw adjacency values mini-
mizes the effects of spurious connection strengths
between any two genes. The network modules were
defined as branches of the clustering tree resulting from
the dissimilarity matrix dij = 1-ωij. We used the
“dynamic tree cut algorithm” [27], which takes advan-
tage of the internal structure of the dendrogram in cut-
ting the branches and identifying modules.

GO annotation of gene modules
Each modules gene was tested for GO enrichment [30]
using the GOstats R package [57]. Because of the nested
structure of the GO terms, we employed the graph dec-
orrelation procedure suggested by [31]. The resulting
p-values were further adjusted using the Bonferroni pro-
cedure, which accounts for comparison against multiple
modules [13].

Proteome interactions and transcriptome co-expression
The gene network co-expression patterns were com-
pared with a manually compiled protein-protein interac-
tions (PPI) database retrieved from the Human Protein
Reference Database (HPRD) [32,33]. Using EntrezIDs,
we selected the network genes also present in the list of
HPRD gene products. The network genes with PPI
interactions were selected and the average topological
overlap was computed, as was the average topological
overlap for gene groups of same size but randomly
selected (N = 105). Statistical significance was assessed
by counting the number of times random gene groups
displayed higher topological overlap (in this case none).

Quantification of spatial co-localization
The ABA quantifies the local intensity of gene expres-
sion in an image by using individual cubes of 200 μm3

and computing for each the expression energy:

E C

M p I p

C
p C( )

( ) ( )

| |
=

×
∈
∑

, where C is the set of pixels

that intersect a cube, M(p) is a binary mask with the
value 1 for pixels intersecting a cube, and I(p) is the
greyscale value of the ISH image. The spatial correlation
between two image series X, Y is then computed as the
Pearson correlation coefficient:

CC X Y
N XY X Y

N X X N Y Y
( , )

’ ’
=

−

− ( )⎡
⎣

⎤
⎦ − ( )⎡

⎣
⎤
⎦

∑ ∑ ∑
∑ ∑ ∑ ∑ , where the summation

is over all N cubes in the domain.
The web interface of the ABA allows the retrieval of

the 250 genes with highest spatial correlation to a gene
of interest. We restricted the spatial extent of comput-
ing the spatial correlation to the striatum.
To find the most representative members of each

module, the module eigengene, which is the first
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principal component of the matrix representing all the
expression patterns of module genes [37] was computed.
The correlation between the expression pattern of each
gene and the module eigengene results in a measure of
the strength of module membership. For each module,
the top 10 genes ranked in terms of eigengene-based
module membership were selected; subsequently, ABA
interface was used to retrieve the 250 genes most spa-
tially correlated to these top 10 genes.
To perform the Mantel test for correlation between

co-expression and co-localization, a square matrix was
constructed with entries quantifying the strength of spa-
tial correlation between the genes, with NA denoting
unavailable information due to the ABA restricting the
results to only the top 250 most similar genes. This
square matrix was used in the Mantel test for correla-
tion between co-localization and co-expression, using
the R package “ncf” (http://cran.r-project.org/web/
packages/ncf).

Detection of overrepresented TFBSs within the gene
modules
For the detection of TFBSs within modules, the Promo-
ter Analysis and Interaction Network Tool (PAINT) was
used [58]; PAINT is a software tool available online
(http://www.dbi.tju.edu/dbi/tools/paint/index.php),
which connects with the TRANSFAC database [59].
Using the MATCH algorithm [60] and position weight
matrix descriptions of binding sequences, the upstream
region of each gene is searched for TFBSs. Our search
focused on the 2000 base pairs upstream from putative
start sites, used the “minimize false positives” setting
and selected only the TFBSs that had a perfect match to
the 5 base pair core sequence in the transcriptional reg-
ulatory element. Once the putative TFBSs were identi-
fied, PAINT was used to compare each module for
overabundance of specific TFBS against the rest of the
network, with statistical significance assessed using the
Fisher exact test. The raw p-values were further adjusted
due to multiple comparisons [61] using a false discovery
rate approach [62].

Additional material

Additional file 1: This file contains additional figures detailing the
data processing steps, including outlier sample removal and strip
level normalization.

Additional file 2: This file contains all 5600 genes selected for the
network analysis. The genes are identified by EntrezID, gene symbol as
well as nuId, an unique identifier for Illumina probes [63]. The module
color assignment for each of the three networks is provided for each
gene.

Additional file 3: This file contains all the GO annotations for the 16
module genes detected in the HS-CC network.
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